Przyjmuje się, że Księżyc porusza się wokół Ziemi po okręgu ruchem A / B. Gdyby grawitacja nagle zniknęła, Księżyc C / D. A. jednostajnym C. spadłby na Ziemię B. jednostajnie zmiennym D. odleciałby w kosmos ( . / 4 pkt)Zadanie 6 Gondola w lunaparku rusza w górę z przyspieszeniem 4 . Ruch po okręgu to ruch, którego torem jest okrąg. Jeżeli na punkt materialny będzie działała siła prostopadła do prędkości, to będzie ona powodować zakrzywienie toru ruchu. Siła ta nazywana jest siłą dośrodkową. Ze względu na to, że jest ona prostopadła do prędkości, to stale będzie zakrzywiać tor ruchu i będzie źródłem przyspieszenia dośrodkowego. W wyniku działania siły dośrodkowej ciało może wykonywać ruch po okręgu. W ruchu po okręgu, promień wodzący punktu w czasie \(t\) zakreśla kąt \(\Theta\). Można na tej podstawie określić średnią prędkość kątową na tym łuku \(\omega\) \(\omega=\dfrac{\Theta}{t}\) Kąt \(\Theta\) zwykle wyrażany jest w radianach, stąd jednostką prędkości kątowej jest radian na sekundę. Okresem \(T\) w ruchu po okręgu nazywany jest czas wykonania obrotu promienia wodzącego \(\overrightarrow{r}\) o kąt pełny. W ciągu okresu punkt materialny pokonuje drogę \(l\) równą długości okręgu. Gdy promień okręgu wynosi \(r\) jest to \(l=2\pi \cdot r\), w związku z tym prędkość liniowa \(v\) w ruchu po okręgu wynosi \(v=\dfrac{l}{T}=\dfrac{2\pi \cdot r}{T}\) Prędkość liniowa jest styczna do toru ruchu w każdym jego punkcie. Ponieważ w mierze radialnej \(2\pi\) jest miarą kąta pełnego (który jest zakreślany w czasie \(t=T\)) można wskazać zależność łączącą prędkość kątową i liniową \(v=\omega \cdot r\) Miarą zmiany prędkości kątowej jest przyspieszenie kątowe \(\epsilon\). Wyraża ono szybkość zmiany prędkości kątowej w czasie i określane jest formułą \(\epsilon = \dfrac{\Delta \omega}{\Delta t}\) gdzie \(\Delta \omega\) jest zmianą prędkości kątowej w czasie \(\Delta t\) Jednostką przyspieszenia kątowego jest \([\epsilon]=\dfrac{rad}{s^2}\) W przypadku ruchu po okręgu można mówić też o częstotliwości \(f\), która opisuje jak często zostaje wykonany jeden pełny obieg i można ją wyznaczyć ze wzoru \(f=\dfrac{1}{T}\) Jednostką częstotliwości jest Hz (herc). Przykładem ruchu po okręgu jest ruch końcówki wskazówki zegara, która w czasie \(t=24 h=86400s\) zakreśla kąt pełny, stąd jej prędkość kątowa wynosi \(\omega=\dfrac{2\pi}{86400} \dfrac{rad}{s}\). Za ruch po okręgu można traktować też ruch satelity geostacjonarnego – siłą dośrodkową jest w tym przypadku siła grawitacji, a okres ruchu takiego satelity wynosi niecałe 24 godziny, dzięki czemu zachowuje on stałą pozycję nad wybranym punktem równika.
Ciężarek o masie 50 g przywiązano do żyłki i wprawiono w ruch wirowy po poziomym okręgu o promieniu 100 cm. Oblicz siłę dośrodkową działającą na ciężarek, gdy porusza się on z prędkością 5 m/s. 9. Na ciało o masie m w ruchu po okręgu o promieniu r działa siła dośrodkowa F. Jak zmieni się wartość siły dośrodkowej, gdy:
Zadanie 1. Znając promień orbity ziemskiej oraz okres obiegu Ziemi wokół Słońca, wyznacz masę dane tablicowe: R = 1 AU = 150 mln km = 1,5∙1011 m oraz T = 365,25 ruchu po orbicie Ziemia porusza się pod wpływem siły grawitacji wytwarzanej przez Słońce. Jest to ruch w przybliżeniu po okręgu, więc siła grawitacji jest siłą dośrodkową. Zapisujemy wzór na przyspieszenie dośrodkowe i prędkość liniową w ruchu po wartość siły prędkość do wzoru na siłę wstawiamy wzór na siłę kilku przekształceniach otrzymujemy trzecie prawo masę Słońca i podstawiamy wartości liczbowe (pamiętając o zamianie dni na sekundy).ODP. Masa Słońca wynosi około 2∙1030 2. Wyprowadź wzór na gęstość Ziemi. Przyjmij, że dany jest promień R, przyspieszenie grawitacyjne na powierzchni g oraz stała grawitacyjna trzy potrzebne wzory:– na gęstość materii ,– na objętość kuli ,– na wartość przyspieszenia ziemskiego .Podstawiamy wzór na objętość do wzoru na wzoru na przyspieszenie wyznaczamy masę i podstawiamy do powyższego Gęstość Ziemi wyraża wzór .
W próżni nie ma powietrza, a więc nie da się po prostu "odepchnąć". Astronauci mają do tego celu odpowiedni silniczki odrzutowe, które mogą nie tylko przyspieszać, ale i hamować. Innym, podobnym do przeciążenia, choć zupełnie przeciwnym zjawiskiem, jakiego dostarczają astronauci, jest stan nieważkości.
Test: ruch po okręgu Zostaną pokazane pary obiektów poruszających się po okręgu. Po każdym pytaniu wybierz odpowiedź. Masz dokładnie dwie minuty, aby uzyskać jak najwięcej prawidłowych odpowiedzi. Błędna odpowiedź kasuje wynik do 0. Jeśli jesteś gotowy(a), aby rozpocząć test, kliknij przycisk Zacznij. Nie zapomnij nacisnąć przycisku Zakończ, aby uzyskać certyfikat ze swoim wynikiem. Zacznij Your browser does not support HTML Canvas...get a better browser!!! Od nowa Zakończ Czerwony Niebieski Remis Jeżeli nie jesteś zadowolony(a) z wyniku, nacisnij przycisk Od nowa. W przeciwnym razie naciśnij przycisk Zakończ, aby wygenerować certyfikat poświadczający Twój wynik. Poniżej wpisz swoje imię Zatwierdź Imię osoby Turns Turns Turns Zrób zrzut ekranu z tej strony i pokaż swojemu nauczycielowi. Ruch po okręgu itp Pamiętaj, zadania domowe są po to żeby rozwiązywać je samodzielnie, a nie po to żeby uczyć się ich rozwiązań na pamięć. Do odpowiedzi zaglądaj dopiero wtedy gdy rozwiążesz zadanie. Zadanie 1 Licznik rowerowy zmierzył prędkość jazdy roweru 25km/h. O ruchu jednostajnym po okręgu mówimy wówczas, gdy ciało porusza się po okręgu lub łuku okręgu ze stałą wartością bezwzględną prędkości. Wyrażenie bezwzględna wartość prędkości jest tu bardzo istotne, ponieważ w ruchu jednostajnym po okręgu kierunek wektora prędkości $\vec{V}$ ciała ulega ciągłej zmianie i wynosi +V albo –V. Ciągła zmiana kierunku prędkości ciała powoduje, że ruch jednostajny po okręgu, pomimo stałej bezwzględnej wartości prędkości ciała, jest ruchem przyspieszonym. Przyspieszenie dośrodkowe Zwróć uwagę (rysunek poniżej), że wektor prędkości $\vec{V}$ jest zawsze styczny do okręgu i zwrócony w kierunku ruchu ciała. Wektor przyspieszenia $\vec{a}$ jest, z kolei, zawsze skierowany, wzdłuż promienia okręgu r, ku jego środkowi. Takie ułożenie wektora przyspieszenia powoduje, że przyspieszenie w ruchu jednostajnym po okręgu nosi nazwę przyspieszenia dośrodkowego. Wzór pozwalający obliczyć wartość tego przyspieszenia przedstawia się następująco: $$a = \frac{V^2}{r}$$ gdzie: V – moduł (wartość bezwględna) prędkości ciała, r – promień okręgu, po którym porusza się ciało. Przykład ruchu jednostajnego po okręgu. Ciało o masie m obraca się zgodnie z kierunkiem ruchu wskazówek zegara. Na rysunku zaznaczono cztery różne położenia ciała i odpowiadające im wektory prędkości $\vec{V}$ oraz przyspieszenia $\vec{a}$. Zauważ, że wektory prędkości oraz przyspieszenia mają jednakowe długości (stała wartość V i a ) oraz zmieniające się w sposób ciągły kierunki. Wektor prędkości jest zawsze styczny do toru ciała, z kolei wektor przyspieszenia jest zawsze skierowany do środka okręgu. Siła dośrodkowa Zgodnie z drugą zasadą dynamiki Newtona źródłem przyspieszenia jest siła działająca na ciało, w związku z czym przyspieszenie dośrodkowe ciała jest skutkiem oddziaływania na nie siły dośrodkowej skierowanej, podobnie jak przyspieszenie, do środka okręgu lub łuku okręgu. Wartość siły dośrodkowej wynosi: $$F = m \hspace{.05cm} a = m \hspace{.05cm} \frac{V^2}{r}$$ Ponieważ m, V oraz r przyjmują stałą wartość, dlatego też siła dośrodkowa, a więc i przyspieszenie a, także przyjmują stałą wartość. Siła dośrodkowa nie jest żadnym szczególnym rodzajem siły. Termin „siła dośrodkowa” odnosi się tylko i wyłącznie do kierunku oddziaływania siły na ciało. Siłą dośrodkową może być np. siła grawitacji, siła Lorentza lub siła naprężenia linki. Okres ruchu Podczas każdego pełnego obiegu okręgu ciało przebywa drogę $s = 2 \hspace{.05cm} \pi \hspace{.05cm} r$ (droga ta odpowiada obwodowi okręgu). Ponieważ bezwzględna wartość prędkości ciała w ruchu jednostajnym po okręgu nie ulega zmianie, dlatego też czas potrzebny na pokonanie każdego pełnego obiegu jest zawsze taki sam. Okres obiegu T, czyli czas w jakim ciało przebywa jeden pełny obieg okręgu wynosi: $$T = \frac{2 \hspace{.05cm} \pi \hspace{.05cm} r}{V}$$ Nachylenie wyrażone jest przez Równanie 11.8, a okres przez Równanie 11.6, natomiast promień okręgu dany jest przez Równanie 11.5. Zauważmy, że prędkość w wyrażeniu na promień okręgu odnosi się tylko do jej składowej prostopadłej, która odpowiada za ruch po okręgu. Przejdź do listy zasobów. sprawdzanie wiedzy Opis: Liczba zadań: 10 Liczba punktów: 23 Liczba grup: 2 Szacowany czas: 26min Autor: Nowa Era Filtry: testy Poziom: Klasa 1 Źródło zadań: 2. Ruch po okręgu i grawitacja 11. Ruch po okręgu 12. Siła dośrodkowa 13. Obliczanie siły dośrodkowej 14. Grawitacja 15. Siła grawitacji jako siła dośrodkowa 16. Ruch satelitów 17. Ciężar i nieważkość 18. Księżyc – towarzysz Ziemi 19. Układ Słoneczny Zaktualizowany: 2021-10-21 Masę tę można traktować jako zlokalizowaną w środku planety. Gdy podstawimy w miejsce M Z tylko tę jej część, która znajduje się wewnątrz kuli o promieniu r, wtedy M = ρ ⋅ ( objętość kuli) i w miejsce R Z podstawiamy r, Równanie 13.2 przybiera postać: g = G M Z R Z 2 = G ρ 4 3 π r 3 r 2 = 4 3 G ρ π r.
Łatwo i szybko wyszukaj materiały do zajęć Dział 2. Ruch po okręgu i grawitacja Materiały dla nauczyciela (12) Prowadzenie lekcji Do wysłania uczniom Sprawdzanie wiedzy Materiały prezentacyjne Filtry Nowość \ Klasa 1 \ 2. Ruch po okręgu i grawitacja \ 12. Siła dośrodkowa Nowość \ Klasa 1 \ 2. Ruch po okręgu i grawitacja \ 12. Siła dośrodkowa Nowość \ Klasa 1 \ 2. Ruch po okręgu i grawitacja \ 11. Ruch po okręgu \ Klasa 1 \ 2. Ruch po okręgu i grawitacja \ 17. Ciężar i nieważkość \ Klasa 1 \ 2. Ruch po okręgu i grawitacja \ 14. Grawitacja \ Klasa 1 \ 2. Ruch po okręgu i grawitacja \ 11. Ruch po okręgu \ Klasa 1 \ 2. Ruch po okręgu i grawitacja \ 17. Ciężar i nieważkość Karty pracy do scenariuszy lekcji Pobierz wszystkie Z bieżącej strony
RiFU.
  • 49vqqu544z.pages.dev/303
  • 49vqqu544z.pages.dev/107
  • 49vqqu544z.pages.dev/295
  • 49vqqu544z.pages.dev/53
  • 49vqqu544z.pages.dev/278
  • 49vqqu544z.pages.dev/392
  • 49vqqu544z.pages.dev/306
  • 49vqqu544z.pages.dev/175
  • 49vqqu544z.pages.dev/324
  • ruch po okręgu i grawitacja